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Abstract—This paper is the report for an exploratory research
project for ECE 396. It covers an introduction to Network
Neuroscience and Graph Signal Processing. It also goes over
preprocessing steps, inferring graph structure from data and
possible applications of GSP in this area. Results indicate that
Phase Locking Value (PLV) is a a better metric than correlation
for functional connectivity analysis. While results are fairly
limited due to a lack of data, a lot of promising avenues for
future work are discovered.

Index Terms—Graph Signal Processing, Network Neuro-
science, Functional Connectivity,

I. INTRODUCTION

The human brain has been subject to research interest for
multiple centuries now. Brain connectomics is a relatively
new area of study that has sprung with the rise of imaging
techniques such as EEG and MRI. Brain connectomics is the
study of interactions of networks in the brainl'l - in hopes
of shedding light on clinical disorders such as dementia, and
schizophrenia, and just better our understanding of how the
brain operates.

There exist primarily 2 forms of Brain Networks (BNs) -
Structural and Functional Networks. These networks consist
of vertices that correspond to specific brain regions, and
measuring edges using a pair-wise computation[?]. Edges in
structural networks are derived from the physical structure
and layout of the brain (physical distance, connected surface
area, etc). Functional Network edges are evaluated based on
the statistical relation between levels of activity in different
regions of the brain - typically using Blood Oxygenation
Levels (BOLD) in fMRI, or more recently, EEG signals (with
the aid of source localization techniques).

Traditional connectomics involves measuring graph-
theoretical metrics of these networks, encapsulating global
and local characteristics. These include path efficiency,
average node degree, small-worldness, etc. These metrics,
however, only provide insight into the average behavior of the
network in a given time slice and fail to provide information
about network dynamics.

Graph-Signal Processing (GSP) offers a powerful tool for
this problem, as it takes into account brain activity as well as
the topology of the underlying network structure.

II. GSP FUNDAMENTALS

Table I covers some commonly used notations in GSP. W,
is the weight of the edge between the i’th and j’th vertices in
the graph. The degree matrix D;; = Z;vzl W;;, which is the
sum of all edges for each node. The Laplacian L = D —W, is
an important operator in GSP, and approximates the Laplacian
operator in the graph-domain, and represents the ’smoothness’

Symbol Explanation
W Weighted Adjacency Matrix
D Weighted Degree Matrix
L Graph Laplacian
U Laplacian Eigenvectors (Graph Fourier Basis)
X Graph signal

TABLE I
GSP NOTATION.

of a graphl®]. The eigenvectors of L make up U. A graph signal
is simply a set of values, each of which are mapped to a node
on the graph.

Together, these basic units form the fundamentals of GSP,
giving us an effective toolkit to manipulate data with.

III. PREPROCESSING STEPS

Obtaining graph signals from a set of time-series signals
was a fairly involved task with several steps, particularly to
reduce noise and perform accurate source localization. The raw
data consisted of 100s worth of 64-channel EEG recordings
(at 512Hz), and the final processed data was 100s worth of
102-node source space signals (at 512Hz).

A. Dropping Noisy Artifacts

First, bad channels in the original EEG recordings were
identified by comparing the autocorrelation of the signals
received at each node. Additional electrodes were marked
as noisy after a visual inspection. These channels were then
dropped and interpolated using the remaining data.

Next, we performed ICA on the signals in order to identify
the labels for sources in accordance to the SCCN ICLabel tool-
box. This allowed us to identify and minimize contributions
from artifacts such as eye-blinking, heartbeats, and muscle
twitches. This ensures that a large amount of activity observed
in the reconstructed signals is largely from brain components.

B. Source Localization (eLORETA)

Exact Low-Resolution Electromagnetic Tomography
(eLORETA) is a technique used to estimate the internal
activity of the brain, using surface-level data. The resulting
brain source data can then be used to obtain a graph signal.

eLORETA involves solving a forward and inverse problem.
The forward problem is computing the potentials on the scale
produced by ’dipole models’ in the brain, and the inverse
allows us to estimate signals in the source space. We used
a FreeSurfer template[*! of the head, which encapsulates
information about the location of dipoles as well as the non-
uniform conductivity of fields inside the human skull.
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Fig. 1. 2D visualization of ICA components on head topology (top-view).
Only components with a probability ;0.80 of being ’brain’ or ’other’ were
used in signal reconstruction.

This procedure yielded about 40,960 dipoles per hemi-
sphere, which were then averaged into 102 signals, each
corresponding to a ’parcel’ or region in the brain. These
averages were computed by grouping dipoles in certain region
specified by a map (Schaefer’s Atlasl6]).

After having completed all the preprocessing steps, we now
have a graph signal x which has the shape (102,51200) -
102 nodes, each with 512Hz x 100s worth of samples. This
only leaves generating the W in order to start applying GSP
techniques. The code used for preprocessing can be found
here. A bulk of these preprocessing steps were performed
using the MNE Python Toolkit["]

IV. GRAPH STRUCTURE INFERENCE

Inferring graph structure from data is non-trivial. However,
doing so allows us to minimize any prior assumptions about
the topology of the network we are dealing with. This is
well-suited to functional connectivity, since brain-network
characteristics vary from individual to individual, and are
affected by things like age, sex, psychiatric conditioning!®!,
etc. Additionally, there exist short-term brain ’states’, that
exhibit different behavior and network dynamics. As such
using a predetermined network structure for GSP purposes
is likely to degrade the quality of information that can be
obtained. The only assumption we can make about the network
structure is that it would follow the Wattz-Strogatz Model, due
to the small-world structure of functional brain networks.

There exists a technique known as Multidimensional Scal-
ingl3 that is used to convert graphs to Euclidean spaces.
This technique can be expressed as an equation containing
the difference matrix (A), where each element(A;;) is the
Euclidean distance between 2 nodes.

A=W+w1,1r -1, - W)

This problem is invertible under a few conditions, that W is
symmetric and non-negative. As such I use a pairwise metric to
generate A and then perform Inverse Multidimensional Scaling
to obtain W, effectively inferring a graph structure from the
data.
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Here p(z;,x;) is a pairwise metric to represent functional
connectivity between 2 nodes i and j. I used one of the fol-
lowing functions - Phase Locking Value, Amplitude Coupling,
Granger Causality, and Correlation. The absolute value of
these were used to meet the invertibility criterion. d(v;,v;)
represents the structural connectivity of 2 nodes, and is the
physical distance between the barycenters of each parcel/node.
o1 and o9 are scaling variables.

It is important to note that this work does not account for the
brain state transitions. A Hidden Markov Model to splice the
original time-series source signals about their transition points
should fix this, but this could not be implemented due to a
lack of computing resources. As such, all data was randomly
sliced into a fixed number of states (15) randomly, which is
sure to affect results and introduce inconsistencies.

Finally, we have obtained both the graph signal x and the
underlying graph structure through W, and we can begin
applying GSP techniques.

V. GSP APPLICATIONS
A. Graph Sparsification

Due to the nature of the steps used for graph structure infer-
ence, we end up with a perfectly connected graph with exactly
5151 edges. This is undesirable since a) GSP computations
would take significantly longer, and (b) it becomes difficult to
inspect the 'meaningful’ connections in the graph.

As such I attempted to perform a spectral graph-
sparsification of sorts, using the graph Fourier basis. The
algorithm used was as follows

« Decompose L: L = UAUT

« Project Signal onto Graph Fourier Basis: ©; = Uz

o Use the 40 strongest components of the projection to

make U

« Reconstruct L from the top 50 eigenvectors: L = UAUT

However, this algorithm failed in the last step, which is
reconstructing W from L. L = Zj.vzl W,;j — W, ends up being
a difficult calculation. As such this approach was dropped in
favor of the Spielman-Srivastava Sparsification algorithm[%].

This facilitated a reduction in edges by over an order of
magnitude.

B. Signal Diffusion

GSP Operators can be used to study the diffusion of a graph
signal over a network[?]. This can be estimated using

x,+1 = (I+aL) 'x,

Given that we have all values of z,, we can evaluate the
performance of this algorithm for different values of « using
the square error over 100 sample iterations. Interestingly, it
seems that the error increases linearly with « (as seen in Fig.
3), indicating that the diffusion model does not hold true for
neural activity. Another interesting point to note is that this
error is the same for Ws derived from different metrics. Per-
haps alternative operators or better network inference improves
results.


https://github.com/ScreamingPigeon/neuroconn

Original Graph

-0.25

-0.50

-0.75

-1.00

-1.00 -0.75 -0.50 -025 000 025 050 075 100

Graph after Spielman-Shrivastava Sparsification

-0.25

-0.50

-0.75

-1.00

-1.00 -0.75 -0.50 -025 000 025 050 075 100

Fig. 2. Graph Visualization before and after sparsification. Note the 2 main
clusters in the sparse graph
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Fig. 3. Diffusion Error over 100 iterations for a sample graph signal

C. Connectivity Dynamics

Past work on the dynamics of functional connectivity net-
works has relied on sliding window analysis. GSP techniques
offer an alternative approach to studying network dynamics,
with the aid of Dirichlet Energy (DE)[°!.
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This measure quantifies the agreement between the graph
signal. If it is large and positive, that means that there is a
discrepancy between the connectivity and amplitude of signals.
Conversely, if the DE is low, then the weights and signal
amplitudes are in agreement.

Interestingly, there exists a modular DE (MDE) that also
captures local-level behavior in sub-modules. I will not be us-
ing MDE due to having to split a graph into sub-graphs, which
brings in another instance of the graph structure problem.

Dirchlet Energy over Time
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Fig. 4. Dirchlet Energy Over about half a second

Metric Avg. Edges | Avg. Diffusion Error | Avg. DE
PLV 386.87 101.77 0.245
Correlation 476.47 101.77 0.418
TABLE II

FUNCTIONAL CONNECTIVITY METRICS AND THEIR PERFORMANCE

As seen in Fig 4, the graph has a very low DE in the
first 100 samples, after which it increases manyfold. This is
possibly indicative of a short-term state fluctuation around the
100th sample - which would explain the sudden dissonance
in connectivity and graph signals. HMM integration might
yield more consistent results. Additionally, looking for sharp
changes in DE levels might be a lower-cost alternative to using
HMMs to approximate brain-state transitions.

D. Performance of Functional Connectivity Metrics

Both (A) Sparsification and (B) Diffusion would change
with a change in W. As such, comparing different metrics
used to create W would help shed light on what information
is more ’accurate’. Table II shows the average performance of
the previous algorithms with graphs constructed using different
functional connectivity metrics. These averages are computed
using the average performance for 10 EEG recordings from
different subjects.

It would appear that PLV outperforms Correlation due to
a lower DE, which would imply better coherence with the
network structure, but this cannot be verified without correctly
implementing the time-varying graph structures as discussed
at the end of IV.

VI. CONCLUSION

This paper covers very limited applications of GSP in
network neuroscience. Due to the varied number of factors
that affect results - a few more advanced studies need to
be completed, that can reliably account for factors such as
brain state transitions, functional connectivity metrics, and
more. The volume of preprocessing steps that needed to be
completed in order to start applying GSP techniques also
significantly hindered progress.



GSP Applications in this field have been fairly limited
in the past and I believe this is a good first step. Further
work would investigate the application of Hidden Markov
Models to create a time-varying graph structure and compare
performance to a DE-change approach mentioned in V(D).
There is also interesting work to be done in applying spectral
graph sparsification techniques to approximate a tree that
represents the network. Additional work can be done using
Graph Filters and feature reduction using projection.
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